SELECTIVE POPULATION AND DECAY OF NEUTRON UNBOUND STATES IN 13Be

J.D. MCGUGAN1, R.A. HARING-KAYE2, N.T. ISLAM2, AND THE MONA COLLABORATION

1COLORADO COLLEGE, 2OHIO WESLEYAN UNIVERSITY

RESEARCH ABSTRACT

Atomic nuclei with an overabundance of neutrons relative to the number of protons are known to exhibit different structural properties than their more stable counterparts. For example, the "shells" in which the neutrons arrange themselves are known to change far from stability, resulting from a relative shift of the discrete energy states that are available to the valence particles. The exotic neutron-rich 13Be provides an excellent opportunity to explore the effects of neutron excess on shell behavior since it has one more neutron than an established closed shell at neutron number $N=8$. The ultimate goal of this research is to understand the decay process by which 13Be integrates into a neutron and a 14Be nucleus, to identify and measure the energy states of 13Be and infer the energy levels occupied by its valence neutrons, and to compare the measured results to contemporary shell model calculations. In November, 2010, an experiment was conducted at the National Superconducting Cyclotron Lab at Michigan State University that produced 13Be and recorded events associated with its disintegration. The work accomplished this summer has focused on calibrations of the various detector systems used to record and track the 13Be nuclei that result from the decay of 13Be. These included position and energy-sensitive calibrations that are necessary to track the trajectories and measure the energies of the 13Be nuclei. Such calibrations are essential to the proper identification of 13Be, which eventually will lead to inferences about the structure of 13Be just prior to its disintegration.

THE NEUTRON DRIp LINE

The Neutron Drip Line is the jagged line on the chart of nuclides that marks the boundary between neutron bound and neutron unbound isotopes. Unbound isotopes have a binding energy of 0 for at least one of their constituent neutrons, meaning the outermost valence neutrons spontaneously fall off the nucleus until the nucleus becomes neutron bound. Unbound neutron decay by neutron emission mediated by the strong nuclear force. Theoretically there are numerous nuclei near the Neutron Drip Line (and the Proton Drip Line) that have not been studied. Because the area of known nuclei is so small compared with the entire nuclear landscape, the rules formed to describe the behavior of nuclei in the known region do not necessarily hold up for nuclei in general. The purpose of this research is to study and understand the territory beyond the Neutron Drip Line.

WHY 13Be?

13Be is neutron unbound and lies just beyond the Neutron Drip Line. In fact, it is surrounded on three sides by neutron-bound isotopes yet decays 18 orders of magnitude faster than any of them. Furthermore, it is just one neutron away from a closed shell (13Be has 4N). Thus, 13Be affords an excellent opportunity to study nuclear shells far from stability.

EXPERIMENTAL SETUP

Detector Calibrations

Work this summer has focused on calibrations of the detector systems. Below are a few examples of those calibration procedures.

ACKNOWLEDGMENTS

This work is being undertaken by the members of the MoNA Collaboration*, an undergraduate research initiative funded in part by grants from the National Science Foundation and consisting of 10 primarily undergraduate institutions partnering with Michigan State University. Currently under study by the members of the MoNA Collaboration are 15Be, 23F, and 23O. These experiments are conducted at the National Superconducting Cyclotron Laboratory at Michigan State University.

I would like to acknowledge and thank the Research Experience for Undergraduates (REU) program of the National Science Foundation for providing funding for my research this summer and Ohio Wesleyan University for hosting me.

*Members: Augsburg College, Central Michigan University, Concordia College, Gettysburg College, Hope College, Indiana University-South Bend, Michigan State University, Ohio Wesleyan University, Rhodes College, Widener College, Westminster College