

Dynamics of the Quantum Duffing Oscillator

Matthew G. Mansell, Alma College; Lawrence Moses, The University of Akron; and Dr. Bradley Trees, Ohio Wesleyan University

The Problem

We studied a periodically driven, damped, weakly nonlinear, quantum oscillator and compared to its classical analog in an attempt to model and further understand the dynamics of Josephson junctions.

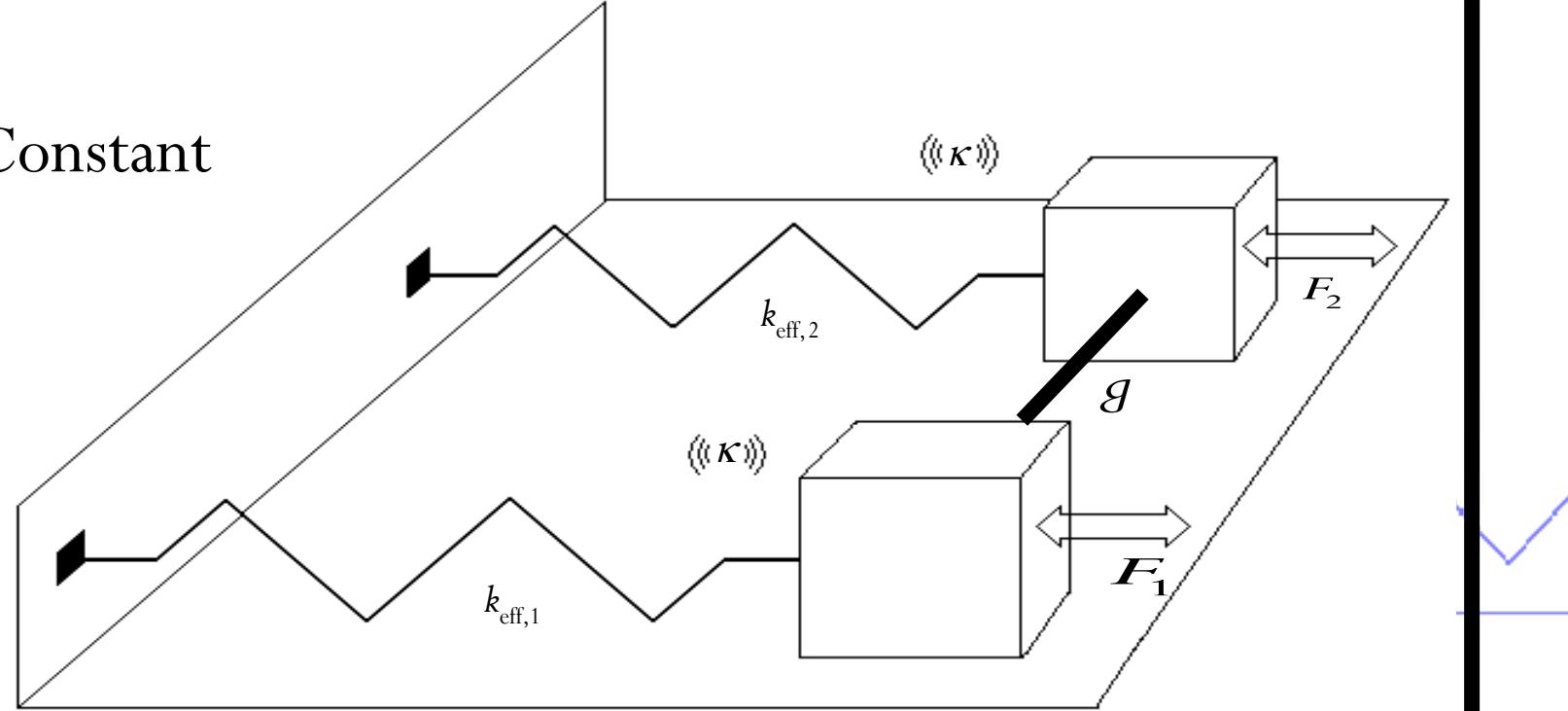
$k_{\text{eff}} = k + \mathcal{E}x^2$ = Effective Spring Constant

F_i = Periodic Driving Force

κ = Damping Coefficient

g = Coupling Coefficient

m_i = Mass i



Classical Synchronization

Newton's equations of motion for periodically driven, damped, nonlinear, coupled oscillators:

$$\frac{d^2x_1}{dt^2} + \kappa\dot{x}_1 + \omega_0^2 x_1 + \mathcal{E}x_1^3 - g(x_1 - x_2) = F_1 \cos(\omega_d t)$$

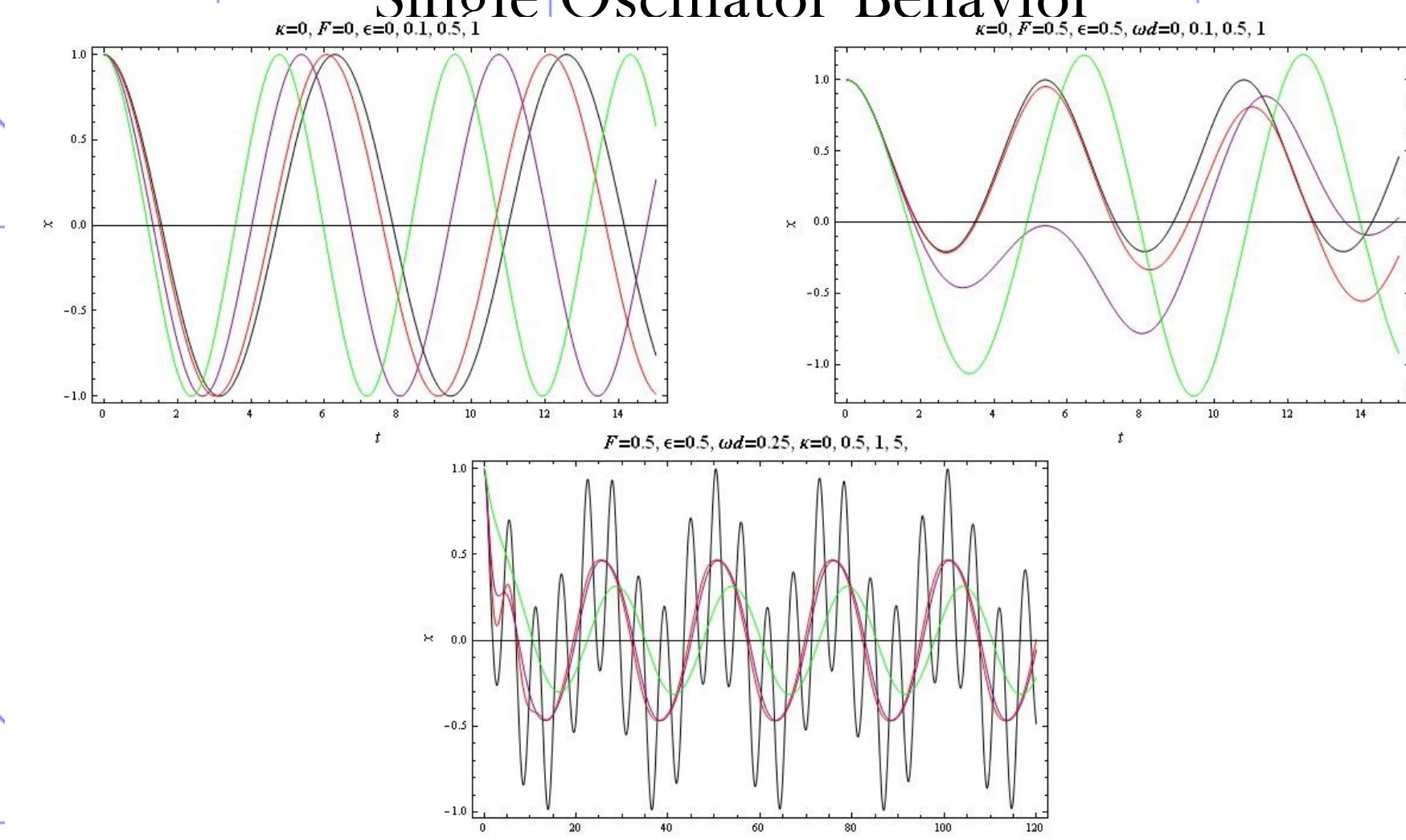
$$\frac{d^2x_2}{dt^2} + \kappa\dot{x}_2 + \omega_0^2 x_2 + \mathcal{E}x_2^3 - g(x_2 - x_1) = F_2 \cos(\omega_d t)$$

κ = Damping Parameter, \mathcal{E} = Nonlinear Parameter, g = Coupling Strength

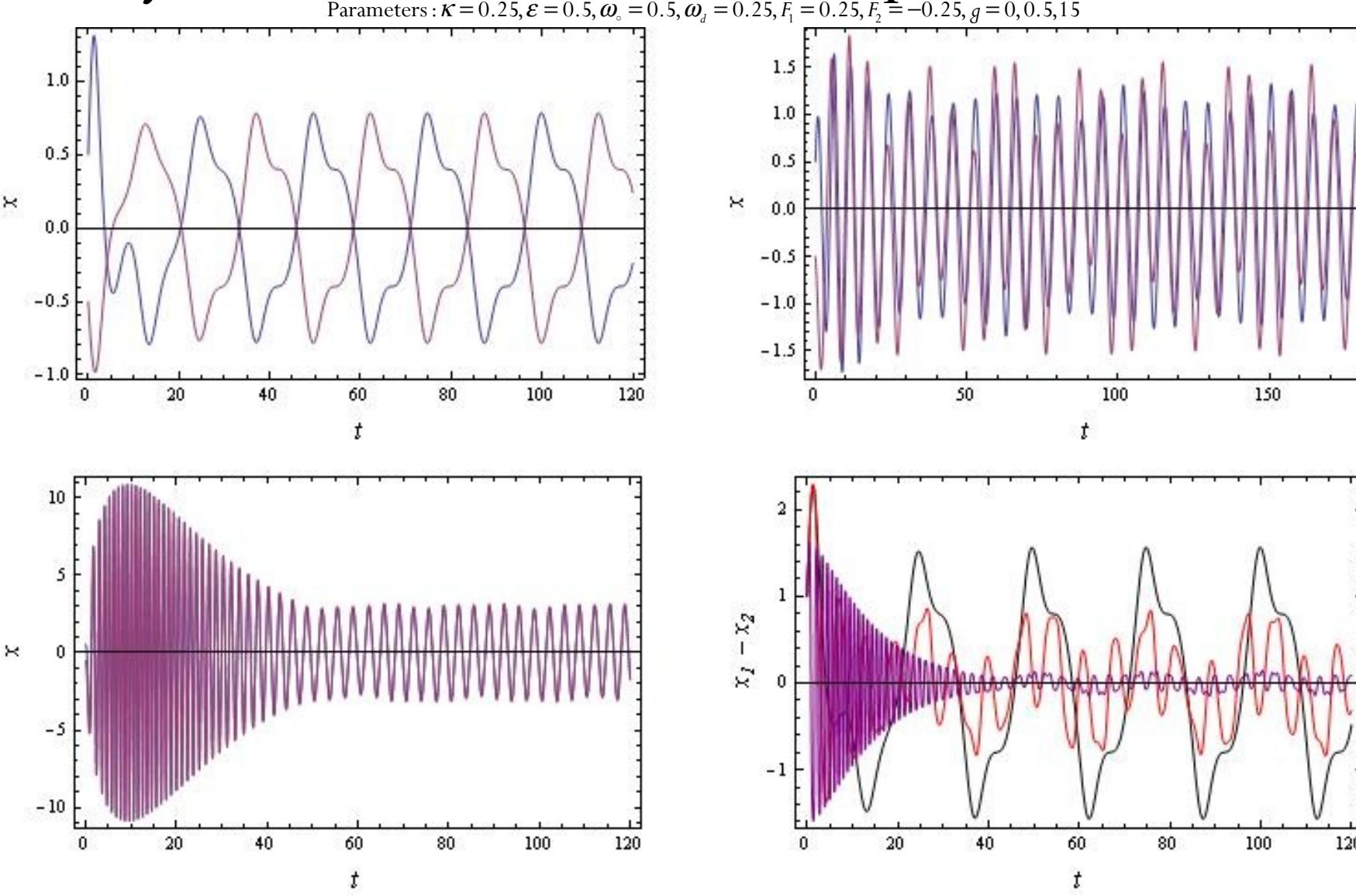
x_1 = Position of Mass 1, F_1 = Driving Force Amplitude on Mass 1

x_2 = Position of Mass 2, F_2 = Driving Force Amplitude on Mass 2

ω_0 = Natural Oscillator Frequency, ω_d = Driving Frequency



Synchronization of Two Coupled Oscillators



Methodology: Quantum Case

- Solve Schrödinger's equation for a periodically driven, nonlinear, quantum oscillator using a Hamiltonian operator of the form:

$$\hat{H} = \frac{p^2}{2m} + \frac{1}{2}kx^2 + \mathcal{E}x^4 + F_0 \cos(\omega_d t).$$

i $\hbar \frac{\partial \Psi(x, t)}{\partial t} = \hat{H} \Psi(x, t),$

- Damping is added to Schrödinger's equation using the Quantum State Diffusion (QSD) method.

- This method involves a system (the oscillator) surrounded by an environment. The environment is much larger than the system, such that the environment can affect the system; however, the system cannot affect the environment. The equation is constructed by considering the average effect of the environment on the system. After inserting the QSD damping term we obtain a modified Schrödinger's Equation:

$$i \hbar \frac{\partial \Psi(x, t)}{\partial t} = \hat{H} \Psi(x, t) + \left(\langle \hat{L}^+ \rangle_\Psi \hat{L} - \frac{1}{2} \hat{L}^+ \hat{L} - \frac{1}{2} \langle \hat{L}^+ \rangle_\Psi \langle \hat{L} \rangle_\Psi \right) \Psi(x, t) + \left(\hat{L} - \langle \hat{L} \rangle_\Psi \right) \Psi(x, t) \frac{d\xi}{dt}.$$

- The \hat{L} and \hat{L}^+ are called Lindblad operators, which are linear combinations of the position and momentum operators.

$$\hat{L} = \sqrt{\kappa} a = \sqrt{\kappa} \sqrt{\frac{1}{2\hbar m\omega_0}} (ip + m\omega_0 x)$$

$$\hat{L}^+ = \sqrt{\kappa} a^+ = \sqrt{\kappa} \sqrt{\frac{1}{2\hbar m\omega_0}} (-ip + m\omega_0 x),$$

where a and a^+ are the ladder operators for the simple harmonic oscillator.

- The $d\xi$ in the last term is a complex differential Gaussian random variable centered at zero. This number is used to determine the extent to which the system interacts with the environment.

- Calculate various expectation values.

- Choose $\Psi(x, 0) = \psi_n(x)$, which are energy eigenstates of the Simple Harmonic Oscillator.

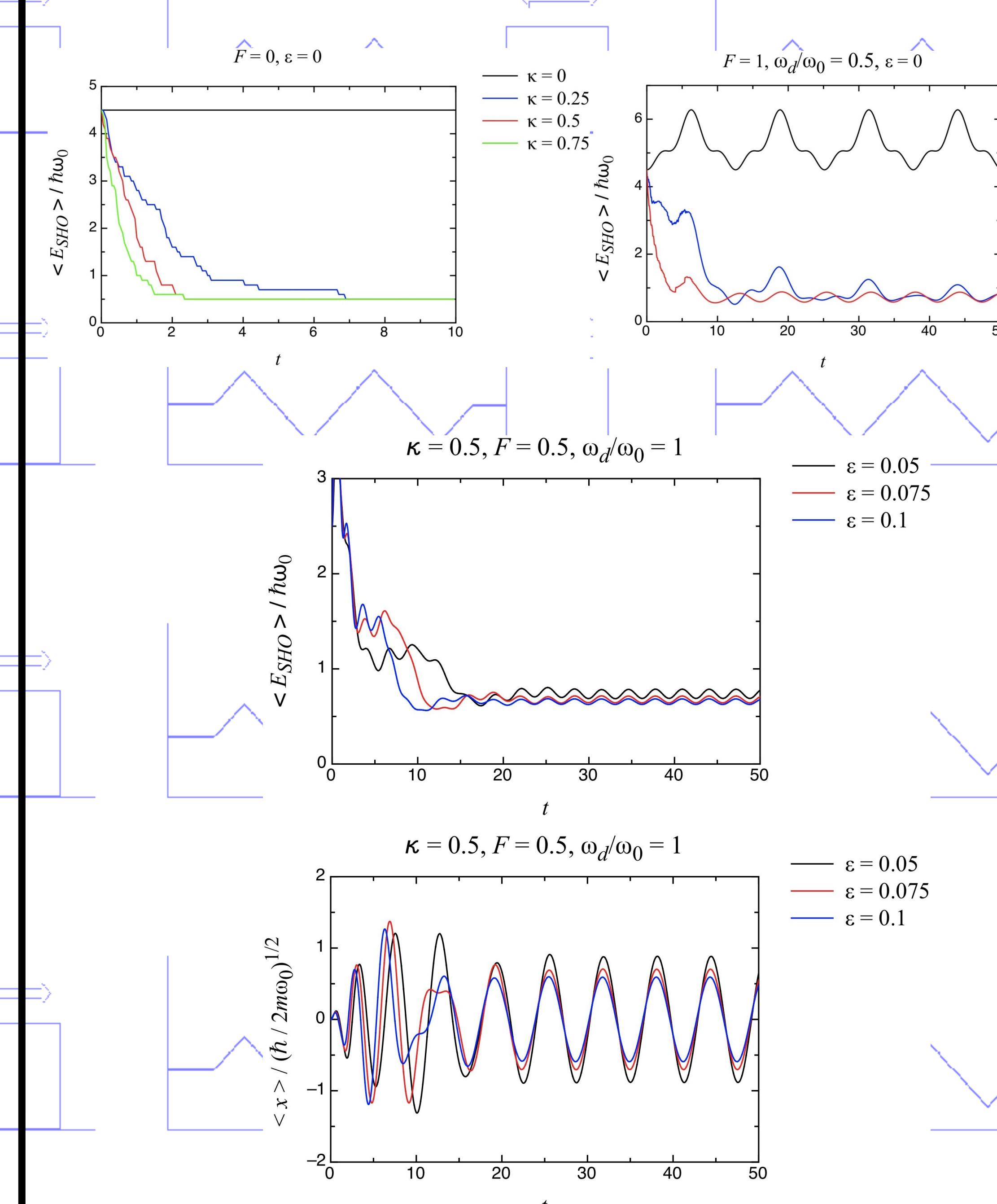
- Solve Schrödinger's Equation numerically for $\Psi(x, t)$ using the fourth-order Runge-Kutta method, after which we calculate expectation values such as:

$$\langle x \rangle(t) = \int_{-\infty}^{\infty} \Psi^*(x, t) \hat{x} \Psi(x, t) dx, \quad \langle x^2 \rangle(t) = \int_{-\infty}^{\infty} \Psi^*(x, t) \hat{x}^2 \Psi(x, t) dx$$

$$\langle p \rangle(t) = \int_{-\infty}^{\infty} \Psi^*(x, t) \hat{p} \Psi(x, t) dx, \quad \langle p^2 \rangle(t) = \int_{-\infty}^{\infty} \Psi^*(x, t) \hat{p}^2 \Psi(x, t) dx$$

$$\langle E_{\text{Mech}} \rangle \approx \langle E_{\text{SHO}} \rangle = \frac{\langle p^2 \rangle}{2m} + \frac{1}{2}m\omega_0^2 \langle x^2 \rangle$$

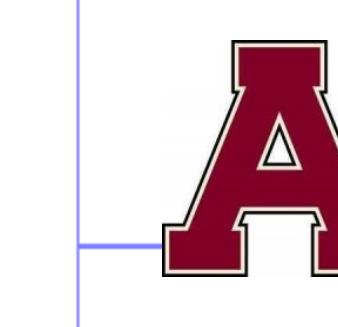
Results: Quantum Duffing Oscillator



Future Plans

- Plans:
 - Solve Schrödinger's equation for two coupled, quantum Duffing oscillators.
 - Look for evidence of quantum synchronization.
 - Comments:
 - Fourth-order Runge-Kutta may not adequately handle coupled nonlinear quantum oscillators.
 - The nonlinear oscillators are numerically unstable.

Acknowledgements



Funding from the National Science Foundation, grant number: 1003992