
The 
Problem
We studied a periodically driven, damped, weakly nonlinear, 
quantum oscillator and compared to its classical analog in an 
attempt to model and further understand the dynamics of 
Josephson junctions.

Classical Synchronization
Newton’s equations of motion for periodically driven, damped, 
nonlinear, coupled oscillators:

Single Oscillator Behavior

Synchronization of Two Coupled Oscillators

Results: Quantum 
Duffing Oscillator

Future Plans
 Plans:

 Solve Schrödinger's equation for two coupled, quantum Duffing 
oscillators.

 Look for evidence of quantum synchronization.
  Comments:
 Fourth-order Runge-Kutta may not adequately handle coupled 

nonlinear quantum oscillators.
The nonlinear oscillators are numerically unstable.
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Methodology: Quantum Case
Solve Schrödinger's equation  for a  periodically driven, nonlinear, quantum oscillator 
using a Hamiltonian operator of the form: 

Damping is added to Schrödinger's equation using the Quantum State Diffusion (QSD) 
method.

 This method involves a system (the oscillator) surrounded by an environment. 
The environment is much larger than the system, such that the environment 
can affect the system; however, the system cannot affect the environment. The 
equation is constructed by considering the average effect of the environment 
on the system. After inserting the QSD damping term we obtain a modified 
Schrödinger’s Equation:

 
  The              are called Lindblad operators, which are linear combinations of 

the position and momentum operators. 

where a and a+ are the ladder operators for the simple harmonic oscillator. 
 
 The ∂ξ  in the last term is a complex differential Gaussian random variable 

centered at zero. This number is used to determine the extent to which the 
system interacts with the environment. 

Calculate various expectation values.  

 Choose Ψ(x,0)
 
=

 
ψn(x), which are energy eigenstates of the Simple Harmonic 

Oscillator.

 Solve Schrödinger’s Equation numerically for Ψ(x,t) using the fourth-order 
Runge-Kutta method, after which we calculate expectation values such as:
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