The

Problem

We. studied/a periodically driven, damped, weakly nonlinear,

quantum oscillator and compared to its.classical analog in an

attempt to model and turther understand the dynamics of

Josephson junctions.

k o =k + & = Effective Spring Constant {lorc i

F = Periodic Driving Force

K = Damping Coetficient

g/~ CouplingCoefticient

m-—— Mass-i

Classical Synchronization

Newton’s-equations of motion tor periodically driven, damped;

nonlinear, coupled oscillators:
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dt
K = Damping Parameter, £ =Nonlinear Parameter, g = Coupling Strength

1

x, = Position of Mass1,

F, =Driving Force Amplitude on Mass 1
x, = Position of Mass 2, F, =Driving Force Amplitude on Mass 2

(W, = Natural Oscillator Frequency, @, = Driving Frequency
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Dynamics of the Quantum Dutting Oscillator

Matthew G. Mansell, Alma College; Lawrenzo Moses, The University of Akron; and Dr. Bradley Trees, Ohio Wesleyan University

Methodology: Quantum Case

" Solve Schrodinger's equation for a periodically driven, nonlinear, quantum oscillator
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using a Hamiltonian operator of the form:

A= L+ 1k’ +ex +Egoslol)

N . Non-

Kinetic Harmonie¢Potential . . Periodic Driving
Energy Energy Inearity Force
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" Damping is added to Schrodinger's equation using the Quantum State Ditfusion (QSD)
method.
" Thismethod involves a system (the oscillator)surrounded by an environment.
The environmentis much larger thanthe system, such that the environment
can affect the system; however, the system cannot affect the environment. The
equation is constructed by considering the average effect of the environment
on the system. After inserting the QSD damping term we obtain a moditied
Schrodinger’s Equation:
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" The Land " are called Lindblad operators, which are linear combinations of

the position and momentum operators.
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where a and g™ are the ladder operators for the sirnple harmonic oscillator.

" The OC in the last term is a complex differential Gaussian random variable
centered at zero. This number is used to determine the extent to which the

system. interacts with the environment.

® Calculate various expectation values.

m Choose W(x,0) =

¥ (x), which are energy eigenstates of the Simple Harmonic

Oscillator.

" Selve-Schrédinger’s Equation numerically for| W(x,r) using the fourth-order

Runge-Kutta methed, after which we ealculate expectation‘values such as;

(x) ILlet x, (x)t) Iwu

p J.prtf) Xth<> J.prt

(B = (B ) =L+ tmag (+7)

X t)dX

X t)dX

Results: Quantum

Duffing Oscillator
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Future Plans

" Plans:

" Solve Schrodinger's equation fortwo coupled, quantum Dutting
oscillators.

" Look for evidence of quantum synchronization.

" Comments:

" Fourth-order Runge-Kutta-may not adequately handle coupled
nonlinear quantum oscillators.

® The nonlinear oscillators are nurnerically unstable.

Acknowledgements

A Ohio Wesleyan University

Alma College

University of Akron

Funding from the National Science Foundation,
grant number; 1003992



	Dynamics of the Quantum Duffing Oscillator Matthew G. Mansell, Alma College; Lawrenzo Moses, The University of Akron; and Dr. Bradley Trees, Ohio Wesleyan University

