Evolution of Collectivity with Spin in 70As

R. M. Elder1, R. A. Haring-Kaye1, S. I. Morrow2, S. L. Tabor2, V. Tripathi2, P. C. Bender3, N. H. Medina4, P. Allegro5, and J. Döring6

1Ohio Wesleyan University, 2Houghton College, 3Florida State University, 4University of São Paulo (Brazil), 5Bundesamt für Strahlenschutz (Germany)

The most recent work concerning 70As extended the level scheme by discovering many new transitions, but found no contiguous negative-parity, odd-spin band (Fig. 3). Such a band exists in nearby odd-68As (Fig. 4) and 72As (Fig. 5), so it is surprising that it would be missing from 70As.

In this research, we sought to enhance the 70As level scheme and compare it with those of 68As and 72As.

The new band (3) is added and is the odd-spin, negative-parity partner to the previously discovered even-spin, negative-parity band. This trait more closely matches the level scheme of nearby 68As.

Figure 8 is an example of one of the coincidence spectra analyzed in this project. In this spectrum, the new transitions, 548 and 566 keV, are clear.

The trend of excited-state energies of the positive parity band in 70As very nearly follow the trend expected for rotation of a rigid body ($\varepsilon \sim \beta J$). Thus 70As is dominated by collective behavior at high spin, likely initiated by the occupation of the $g_{5/2}$ orbital by the unpaired proton and neutron.

The energy differences of several nearby odd-odd nuclei are higher at even states at spin greater than about 10, but higher at odd states before at spin below 10.

Acknowledgements

This project was funded by the Summer Science Research Program at Ohio Wesleyan University and by the National Science Foundation through grant number PHY 04-58403 (FSU).