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Graph Theory

Basics

A graph is a set of vertices and a set of edges. Each 
edge consists of a pair of verticies.

In the case of the SSPP, graphs are weighted 
meaning in addition to a pair of verticies each edge 
has a cost associated to it.

Graphs may be directed or undirected, meaning that 
travel is not necessarily allowed forward and 
backward.

Paths and Journeys

A weighted, undirected graph with a path highlighted in green.

A series of connected vertices forms a path.

The cost of a path is determined by summing the 
weights of the edges between verticies on the path.

A shortest path between two vertices is the shortest 
possible path between the two vertices.

In the SSPP a Journey is attempting to travel 
between two vertices, usually along the shortest 
possible path.

NP-Complete

Finding minimum total cost solutions to the SSPP is 
classified as an NP-Complete problem. 

This can be determined by a simple polynomial time 
reduction from the Steiner Tree Problem which asks 
what is the minimum total weight tree that connects 
a set of points R. These points are then treated as 
start and destination points of journeys in an 
instance of the SSPP problem.

Because finding exact minimum solutions is NP-
Complete it is likely intractable to do and other 
methods must be employed.

Background
The Shared Shortest Path Problem (SSPP) asks 
how to route paths in a graph to minimize cost when 
paths split evenly the costs of journeys they mutually 
use.

Game Theory

One method of analysis takes a game theoretic 
approach to the problem, treating each individual 
journey as a selfish agent. This approach has the 
benefit of modeling real world situations without a 
central authority more accurately than a total cost 
analysis would.

Some concepts from Game Theory include:

A Nash equilibrium is a configuration of choices by 
players such that no individual player (journey) can 
improve their cost by taking a different path. 

A Strong Nash Equilibrium is a configuration in 
which no group of journeys can change their 
positions to improve the costs of all members of the 
group.

Game Theory

Nash Equilibrium

Strong Nash Equilibrium

Shared Shortest Path 
Problem

The Shared Shortest Path Problem asks what is the 
best way, considering that journeys that use the 
same edge split the cost of the edge evenly, to route 
journeys based on some metric.

One measurement of success is whether or not the 
current configuration is a (Strong) Nash equilibrium. 
These configurations are noted as good because 
they are stable in that agents are unlikely to change 
their paths.

Another way to approach the problem is to attempt 
to minimize the total cost for all journeys. These 
situations are beneficial in cases where a central 
authority pays all costs.

Costs:

Total Cost : 44
Strong Nash 
Equilibrium

Journey 1 : 
1 + 25/3 + 1 = 31/3

Journey 2 :
 3 + 25/3 + 6 = 52/3

Journey 3 :
 7 + 25/3 + 1 = 49/3 

Price of Stability

Because a Nash equilibrium is a "stable" state in the 
sense that individual agents will have no desire to 
affect it is a natural question to ask how close in total 
cost a configuration that is a Nash Equilibrium can 
get in total cost to the minimum solution.

In the case of directed graphs, it is known that this 
“price of stability” grows logarithmicaly in the number 
of players on the graph.

For undirected graphs it is an open question whether 
or not the previous bound holds.

Applications
The SSPP has applications in network design, and 
group network routing.

The positioning of stops in a city metro is one 
application of the SSPP.
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A Nash Equilibrium can be found algorithmically 
from any valid configuration, such as one derived 
from the above approximation methods, of the SSPP 
game.

The algorithm for finding an equilibrium simply 
checks whether any journey can make a better path 
choice and moves this journey if it can.

Because the SSPP game is a congestion game this 
action repeatedly decreases what is known as the 
potential of the solution. Once the potential has 
reach a local minimum, the current state is a Nash 
equilibrium.

With this reasoning the previous algorithm is 
guaranteed to halt in a finite number of deviations.

The growth of the number of deviations remains an 
open question.

Nash Equilibrium Finder

Heuristics

This approximation method considers only edges on 
a minimum spanning tree of the original graph. All 
journeys are then routed on the only paths available 
to them.

Spanning Tree Heuristic

The minimum spanning tree of the graph in Column 2.

The DEASE algorithm (short for Delete Edge And 
Share Edge) attempts to encourage sharing 
between groups that may not share based on the 
local landscape of greedy options by making 
unsuable edges shared by a certain number of 
journeys.

After an edge is deleted journeys make new path 
choices based on the current state of the graph.

It is hoped that these edge deletions will lead to a 
Strong Nash Equilibrium, if it exists.

DEASE Algorithm

Although finding exact minimum total cost solutions 
is likely to be an intractable problem it is possible to 
heuristically find approximate solutions whose total 
cost is close to an optimal solution.

The following approximation methods are employed 
to find near optimal solutions:

If Graphs that satisfy a reasonable property, the 
triangle inequality, this heuristic is guaranteed to  
find solutions at worst 2 times the cost of the 
optimum solution.

The SSPP can be expressed as a special type of 
game known as a Congestion Game. 

Among other things, this property ensures that at 
least one Nash Equilibrium always exists in any 
instance of the game.

While Nash Equilbria are guaranteed to exist in all 
graphs, there are known cases in which Strong Nash 
Equilibria do not exist.

Existence of Equilibria
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