Chris Wolverton

Albert M. Austin Professor of Biological Sciences


  • B.S., Miami University
  • Ph.D., The Ohio State University


Chris Wolverton’s research interests include how plants integrate signals such as light, touch, and gravity to influence growth and development. His lab uses a combination of mutants, transgenic approaches, and reporter gene studies along with a custom hardware and software system that combines real-time image analysis with motor control to study the dynamics of sensory output and growth regulation. He is currently funded by NASA for a spaceflight experiment investigating the threshold for gravity perception and to characterize the cellular systems that transduce the gravity signal into cellular information.


  • Plant Physiology
  • Introduction to Cell Biology
  • Genetics
  • Advanced Molecular Techniques

Areas of Interest / Expertise

  • Primary root gravitropism (directional growth response related to gravity)
  • Lateral root gravitropic signaling and root system architecture
  • Root phototropism
  • Plant development
  • Plant molecular genetics
  • Confocal microscopy


  • Roychoudhry, Suruchi, Katelyn Sageman-Furnas, Chris Wolverton, Peter Grones, Shutang Tan, Gergely Molnár, Martina De Angelis, et al. “Antigravitropic PIN Polarization Maintains Non-Vertical Growth in Lateral Roots.” Nature Plants, September 4, 2023, 1–14.
  • Barker, Richard, Colin P. S. Kruse, Christina Johnson, Amanda Saravia-Butler, Homer Fogle, Hyun-Seok Chang, Ralph Møller Trane, et al. “Meta-Analysis of the Space Flight and Microgravity Response of the Arabidopsis Plant Transcriptome.” npj Microgravity 9, no. 1 (March 20, 2023): 21.
  • Meyers, Alexander, Nathan Scinto-Madonich, Sarah E. Wyatt, and Chris Wolverton. “Arabidopsis Growth and Dissection on Polyethersulfone (PES) Membranes for Gravitropic Studies.” In Plant Gravitropism: Methods and Protocols, edited by Elison B. Blancaflor, 2368:233–39. Methods in Molecular Biology. New York, NY: Springer US, 2022.
  • Overbey, Eliah G., Amanda M. Saravia-Butler, Zhe Zhang, Komal S. Rathi, Homer Fogle, Willian A. da Silveira, Richard J. Barker, et al. (2021) NASA GeneLab RNA-Seq Consensus Pipeline: Standardized Processing of Short-Read RNA-Seq Data. iScience 24, no. 4 (April 23, 2021).
  • Kiss, J. Z., Wolverton, S. C., Wyatt, S. E., Hasenstein, K. H., & van Loon, J. J. W. A. (2019). Comparison of Microgravity Analogs to Spaceflight in Studies of Plant Growth and Development. Frontiers in Plant Science, 10.
  • Roberts, B. R., & Wolverton, C. (2018) Transpiration and Drought Stress Recovery of Three Zinnia Cultivars. Journal of Environmental Horticulture, 36(3), 108-113.
  • Roberts, B. R., Wolverton, C., & Janowicz, L. (2017). The impact of substrate and irrigation interval on the post-transplant root growth of container-grown zinnia and tomato. Journal of Environmental Horticulture, 35(1), 1–5.
  • Roberts, B. R., Wolverton, C., & West, S. (2015). Evaluation of a Substrate-applied Humectant to Mitigate Drought Stress in Young, Container-grown Plants. J Environ. Hort., 33(3), 137–141.
  • Wolverton, C. (2015). Quantification of Root Gravitropic Response Using a Constant Stimulus Feedback System. In E. B. Blancaflor (Ed.), Plant Gravitropism (Vol. 1309, pp. 23–30). New York: Springer.
  • Bai, H., Murali, B., Barber, K., & Wolverton, C. (2013). Low phosphate alters lateral root setpoint angle and gravitropism. American Journal of Botany, 100(1), 175–182.
  • Bai, H., & Wolverton, C. (2011). Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type. Plant Signaling & Behavior, 6(10), 1423–1424.
  • Wolverton, C., Paya, A. M., & Toska, J. (2011). Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant. Physiologia Plantarum, 141(4), 373–382.
  • Wolverton, C., & Kiss, J. Z. (2009). An Update on Plant Space Biology. Gravitational and Space Biology Bulletin, 22(2).

Winner of the 2023 Bishop Herbert Welch Award for Scholarly or Artistic Achievement

Contact Info


Schimmel/Conrades Science Center #339
Ohio Wesleyan University
Delaware, OH 43015
P 740-368-3503